# meteostat.TimeSeries.aggregate
Aggregation is an important tool in data analysis. Meteostat allows both time-wise and spatial aggregation.
# Parameters
The freq
parameter specifies the time series' frequency. For full specification of available frequencies, please see here (opens new window). If you want to aggregate across all weather stations, just set the spatial
parameter to True
.
Parameter | Description | Type | Default |
---|---|---|---|
freq | Group by the specified frequency | String | 1H, 1D, 1MS |
spatial | Calculate averages across weather stations | Boolean | False |
# Returns
A copy of self
# Aggregate Functions
Meteostat uses the following aggregate functions:
temp
=>mean
dwpt
=>mean
rhum
=>mean
tavg
=>mean
tmin
=>min
tmax
=>max
prcp
=>sum
snow
=>max
wdir
=>meteostat.utilities.aggregations.degree_mean
wspd
=>mean
wpgt
=>max
pres
=>mean
tsun
=>sum
coco
=>max
# Examples
# Hourly
Get weekly weather data for Frankfurt Airport in December 2018.
from datetime import datetime
from meteostat import Stations, Hourly
start = datetime(2018, 12, 1)
end = datetime(2018, 12, 31, 23, 59)
data = Hourly('10637', start=start, end=end)
data = data.normalize()
data = data.aggregate('1W')
data = data.fetch()
print(data)
# Daily
Get weekly weather data for Frankfurt Airport in 2018.
from datetime import datetime
from meteostat import Stations, Daily
start = datetime(2018, 1, 1)
end = datetime(2018, 12, 31)
data = Daily('10637', start=start, end=end)
data = data.normalize()
data = data.aggregate('1W')
data = data.fetch()
print(data)
# Monthly
Get annual data for Frankfurt Airport from 2000 to 2018.
from datetime import datetime
from meteostat import Monthly
start = datetime(2000, 1, 1)
end = datetime(2018, 12, 31)
data = Monthly('10637', start, end)
data = data.normalize()
data = data.aggregate('1Y')
data = data.fetch()
print(data)